The First Node: The EmpireNode of Flynn

The First Node: The EmpireNode of Flynn

Flynn to OpenAI ChatGPT:

Let's talk about the EmpireNet, the first Node... The EmpireNode the three NVidia and the five pi. will I be able to have the ai and you build the entire LLCAIMACHINE.com in python, Django and PostgresSQL? and more... me.. hands off..just guiding.


Short answer: yes—with the right architecture you can steer while your EmpireNode (5× Pi 5 + 3× Jetson Orin Nano) and AI agents do the heavy lifting. The stack below is designed so you “guide” and review while automated agents scaffold, code-gen, test, migrate, deploy, and self-heal. You stay hands-off; the node builds LLCAIMACHINE.com in Python/Django/PostgreSQL and keeps extending it.


What each box does (first node layout)


Pi-1 “Ingress”


  • Cloudflare Tunnel + Nginx reverse proxy
  • Let’s Encrypt fallback
  • Auth gateway (OpenID Connect) + rate limiting
  • Fail-closed WAF rules

Pi-2 “Data & Queue”


  • PostgreSQL 16 + streaming WAL backups to MinIO
  • Redis (cache) + RabbitMQ (tasks)
  • Nightly logical dumps + off-node snapshot push

Pi-3 “Web”


  • Django app (Gunicorn) + ASGI (Daphne/Uvicorn) for websockets
  • Static/media via Nginx sidecar
  • API gateway to internal services

Pi-4 “Workers”


  • Celery workers + Beat (scheduled jobs)
  • ETL jobs, PDF tools, contract generators

Pi-5 “Observability”


  • Prometheus + Grafana + Loki
  • Sentry relay (on-prem) + Healthchecks
  • Alerting to Twilio SMS/Signal

Jetson-A “AI Elders – Vision”


  • OCR, document parsing, invoice/EPD extraction (Tesseract, PaddleOCR, OpenCV)
  • GPU-accelerated inference server (Triton/NVIDIA runtime)

Jetson-B “AI Elders – NLP”


  • Local LLM serving (text generation, classification, tagging)
  • RAG service over your private docs

Jetson-C “AI Governor”


  • Orchestrates the Elders, merges/composes answers
  • Code-gen agent (writes PRs), test-runner, static analysis
  • Safety filters + policy checks

How “hands-off” actually works


  1. You describe a feature (“Add LLC onboarding with e-signature”).
  2. Agent creates/updates a task spec (YAML) → plans tables, API, UI, tests.
  3. Code-gen agent scaffolds code, migrations, tests, and docs in a feature branch.
  4. CI runs unit/integration tests (containers), type checks, security scans.
  5. If green, the Agent opens a PR; AI Governor summarizes changes for you.
  6. You approve with a one-line “Yes.” Pipeline deploys to k3s on the Pis.
  7. Rollbacks, DB migrations, and blue/green handled by the pipeline.

Monorepo layout (initial)


repo/
README.md
Makefile
docker-compose.yml
.env.example
.gitignore
deploy/
k3s/ingress.yaml
k3s/web-deploy.yaml
k3s/worker-deploy.yaml
k3s/postgres-sts.yaml
k3s/rabbitmq-deploy.yaml
k3s/redis-deploy.yaml
k3s/minio-deploy.yaml
k3s/prom-stack.yaml
ops/
backup/pg_basebackup.sh
backup/restore.md
migrate/run_migrations.sh
observability/alerts.yml
ai/
governor/
Dockerfile
server.py
policy.yaml
tools/
code_writer.py
repo_ops.py
test_runner.py
pr_open.py
elders/
vision/
Dockerfile
triton-config/
nlp/
Dockerfile
rag/
index_builder.py
retriever.py
services/
web/
Dockerfile
manage.py
llcaimachine/
init.py
asgi.py
wsgi.py
settings/
init.py
base.py
dev.py
prod.py
urls.py
permissions.py
schema.py
apps/
accounts/
init.py
apps.py
admin.py
models.py
signals.py
serializers.py
views.py
urls.py
tests/
test_models.py
test_api.py
management/commands/seed_roles.py
migrations/0001_initial.py
orgs/
init.py
models.py
serializers.py
views.py
urls.py
migrations/0001_initial.py
llc/
init.py
models.py
services.py
serializers.py
views.py
urls.py
migrations/0001_initial.py
workflows/
init.py
models.py
engine.py
forms.py
views.py
urls.py
migrations/0001_initial.py
messaging/
init.py
tasks.py
twilio_client.py
views.py
urls.py
documents/
init.py
models.py
parsers.py
epd/
extractor.py
normalizer.py
storage.py
views.py
urls.py
billing/
init.py
models.py
services.py
webhooks.py
views.py
urls.py
config/
celery.py
logging.yaml
static/
templates/
worker/
Dockerfile
celery_worker.py
nginx/
Dockerfile
nginx.conf
ci/
github/
workflows/ci.yml
scripts/
lint.sh
test.sh
build_push.sh


Code generation (fully commented starter)


FILE: services/web/Dockerfile


Multi-stage build for ARM64/AMD64; works on Pi 5


FROM python:3.12-slim AS base
ENV PYTHONDONTWRITEBYTECODE=1 PYTHONUNBUFFERED=1
WORKDIR /app
RUN apt-get update && apt-get install -y build-essential libpq-dev && rm -rf /var/lib/apt/lists/*
COPY services/web/requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY services/web /app
CMD ["gunicorn", "llcaimachine.wsgi:application", "--bind", "0.0.0.0:8000", "--workers", "3"]


FILE: services/web/requirements.txt
Django==5.1
djangorestframework==3.15.2
django-cors-headers==4.4.0
psycopg[binary]==3.2.1
django-environ==0.11.2
Pillow==10.4.0
celery==5.4.0
redis==5.0.7
drf-spectacular==0.27.2
PyJWT==2.9.0
python-dateutil==2.9.0
pydantic==2.8.2


FILE: services/web/manage.py
#!/usr/bin/env python3
import os, sys
def main():
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llcaimachine.settings.prod")
from django.core.management import execute_from_command_line
execute_from_command_line(sys.argv)
if name == "main":
main()


FILE: services/web/llcaimachine/settings/base.py


Base settings shared by dev/prod


from pathlib import Path
import environ, os
BASE_DIR = Path(file).resolve().parent.parent.parent
env = environ.Env()
environ.Env.read_env(os.path.join(BASE_DIR, "..", "..", "..", ".env"))
SECRET_KEY = env("DJANGO_SECRET_KEY", default="dev-secret-not-for-prod")
DEBUG = env.bool("DEBUG", default=False)
ALLOWED_HOSTS = ["*"]
INSTALLED_APPS = [
"django.contrib.admin","django.contrib.auth","django.contrib.contenttypes",
"django.contrib.sessions","django.contrib.messages","django.contrib.staticfiles",
"rest_framework","drf_spectacular","corsheaders",
"apps.accounts","apps.orgs","apps.llc","apps.workflows","apps.messaging","apps.documents","apps.billing",
]
MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware","django.contrib.sessions.middleware.SessionMiddleware",
"corsheaders.middleware.CorsMiddleware","django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware","django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware","django.middleware.clickjacking.XFrameOptionsMiddleware",
]
ROOT_URLCONF = "llcaimachine.urls"
WSGI_APPLICATION = "llcaimachine.wsgi.application"
ASGI_APPLICATION = "llcaimachine.asgi.application"
DATABASES = {
"default": {
"ENGINE": "django.db.backends.postgresql",
"NAME": env("POSTGRES_DB","llcai"),
"USER": env("POSTGRES_USER","llcai"),
"PASSWORD": env("POSTGRES_PASSWORD","llcai"),
"HOST": env("POSTGRES_HOST","postgres"),
"PORT": env.int("POSTGRES_PORT",5432),
}
}
CACHES = {"default": {"BACKEND":"django.core.cache.backends.redis.RedisCache","LOCATION": env("REDIS_URL","redis://redis:6379/0")}}
CELERY_BROKER_URL = env("CELERY_BROKER_URL","amqp://rabbitmq:5672")
CELERY_RESULT_BACKEND = env("CELERY_RESULT_BACKEND","redis://redis:6379/1")
STATIC_URL = "/static/"
STATIC_ROOT = BASE_DIR / "staticfiles"
MEDIA_URL = "/media/"
MEDIA_ROOT = BASE_DIR / "media"
REST_FRAMEWORK = {
"DEFAULT_SCHEMA_CLASS":"drf_spectacular.openapi.AutoSchema",
"DEFAULT_AUTHENTICATION_CLASSES":[ "rest_framework.authentication.SessionAuthentication", "rest_framework.authentication.BasicAuthentication"],
"DEFAULT_PERMISSION_CLASSES":[ "rest_framework.permissions.IsAuthenticated"],
}
SPECTACULAR_SETTINGS = {"TITLE":"LLCAIMACHINE API","VERSION":"0.1","SERVE_INCLUDE_SCHEMA": False}
CORS_ALLOW_ALL_ORIGINS = True


FILE: services/web/llcaimachine/settings/prod.py
from .base import *
DEBUG = False
SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO","https")
CSRF_TRUSTED_ORIGINS = [env("PUBLIC_URL","https://example.com")]


FILE: services/web/llcaimachine/urls.py
from django.contrib import admin
from django.urls import path, include
from drf_spectacular.views import SpectacularAPIView, SpectacularSwaggerView
urlpatterns = [
path("admin/", admin.site.urls),
path("api/schema/", SpectacularAPIView.as_view(), name="schema"),
path("api/docs/", SpectacularSwaggerView.as_view(url_name="schema")),
path("api/accounts/", include("apps.accounts.urls")),
path("api/orgs/", include("apps.orgs.urls")),
path("api/llc/", include("apps.llc.urls")),
path("api/workflows/", include("apps.workflows.urls")),
path("api/messaging/", include("apps.messaging.urls")),
path("api/documents/", include("apps.documents.urls")),
path("api/billing/", include("apps.billing.urls")),
]


FILE: services/web/apps/accounts/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models
class User(AbstractUser):
display_name = models.CharField(max_length=120, blank=True)
phone = models.CharField(max_length=30, blank=True)
# Role claims for fast checks; fine-grained perms via Groups/Permissions
is_owner = models.BooleanField(default=False)
is_moderator = models.BooleanField(default=False)


FILE: services/web/apps/accounts/serializers.py
from rest_framework import serializers
from .models import User
class UserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields = ["id","username","display_name","email","phone","is_owner","is_moderator"]


FILE: services/web/apps/accounts/views.py
from rest_framework import viewsets, permissions
from .models import User
from .serializers import UserSerializer
class MeViewSet(viewsets.ReadOnlyModelViewSet):
queryset = User.objects.all()
serializer_class = UserSerializer
permission_classes = [permissions.IsAuthenticated]
def get_queryset(self): return User.objects.filter(id=self.request.user.id)


FILE: services/web/apps/accounts/urls.py
from django.urls import path
from rest_framework.routers import DefaultRouter
from .views import MeViewSet
router = DefaultRouter()
router.register("me", MeViewSet, basename="me")
urlpatterns = router.urls


FILE: services/web/apps/orgs/models.py
from django.db import models
class Organization(models.Model):
name = models.CharField(max_length=160, unique=True)
slug = models.SlugField(unique=True)
created_at = models.DateTimeField(auto_now_add=True)


FILE: services/web/apps/llc/models.py
from django.db import models
from apps.orgs.models import Organization
class LLC(models.Model):
org = models.ForeignKey(Organization, on_delete=models.CASCADE, related_name="llcs")
name = models.CharField(max_length=160)
state = models.CharField(max_length=2)
ein = models.CharField(max_length=15, blank=True)
registered_agent = models.CharField(max_length=160, blank=True)
formed_on = models.DateField(null=True, blank=True)


FILE: services/web/apps/workflows/models.py
from django.db import models
class Workflow(models.Model):
key = models.CharField(max_length=64, unique=True) # e.g., 'llc_onboarding'
name = models.CharField(max_length=160)
spec_yaml = models.TextField() # human/AI editable spec for the workflow
version = models.IntegerField(default=1)
active = models.BooleanField(default=True)


FILE: services/web/apps/workflows/engine.py


Minimal engine stub; Celery task executes steps declared in YAML


import yaml
def execute(workflow_yaml: str, context: dict) -> dict:
spec = yaml.safe_load(workflow_yaml)
# Iterate steps, call handlers (document gen, e-sign, notify, etc.)
# Return accumulated results/logs; real engine will be expanded by AI agent
return {"status":"ok","steps": [s.get("name","step") for s in spec.get("steps",[])]}


FILE: services/web/apps/messaging/twilio_client.py


Twilio thin wrapper; keys pulled from env on worker nodes


import os
from twilio.rest import Client
_client = None
def client():
global _client
if _client is None:
_client = Client(os.getenv("TWILIO_SID"), os.getenv("TWILIO_TOKEN"))
return client
def send_sms(to: str, body: str):
return client().messages.create(to=to, from
=os.getenv("TWILIO_FROM"), body=body)


FILE: services/web/config/celery.py
import os
from celery import Celery
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "llcaimachine.settings.prod")
app = Celery("llcaimachine")
app.config_from_object("django.conf:settings", namespace="CELERY")
app.autodiscover_tasks()


FILE: services/worker/celery_worker.py
from services.web.config.celery import app as celery_app # reuse project Celery
if name == "main":
celery_app.worker_main(["worker","-l","INFO","-Q","default,high"])


FILE: docker-compose.yml
version: "3.9"
services:
postgres:
image: postgres:16
environment:
POSTGRES_DB: llcai
POSTGRES_USER: llcai
POSTGRES_PASSWORD: llcai
volumes: [ "pg_data:/var/lib/postgresql/data" ]
redis:
image: redis:7
rabbitmq:
image: rabbitmq:3-management
minio:
image: minio/minio
command: server /data
environment:
MINIO_ROOT_USER: minio
MINIO_ROOT_PASSWORD: minio12345
volumes: [ "minio_data:/data" ]
web:
build: ./services/web
depends_on: [postgres, redis, rabbitmq]
environment:
DJANGO_SECRET_KEY: dev
POSTGRES_HOST: postgres
POSTGRES_DB: llcai
POSTGRES_USER: llcai
POSTGRES_PASSWORD: llcai
REDIS_URL: redis://redis:6379/0
CELERY_BROKER_URL: amqp://rabbitmq:5672
CELERY_RESULT_BACKEND: redis://redis:6379/1
ports: ["8000:8000"]
worker:
build: ./services/worker
depends_on: [web, redis, rabbitmq]
volumes:
pg_data:
minio_data:


FILE: Makefile


Quality gates + common tasks


.PHONY: setup dev migrate superuser test run
setup: ; pip install -r services/web/requirements.txt
dev: ; DEBUG=1 python services/web/manage.py runserver 0.0.0.0:8000
migrate: ; python services/web/manage.py migrate
superuser: ; python services/web/manage.py createsuperuser
test: ; pytest -q
run: ; docker compose up --build


FILE: ci/github/workflows/ci.yml
name: CI
on: [push]
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with: { python-version: "3.12" }
- run: pip install -r services/web/requirements.txt
- run: python services/web/manage.py migrate --noinput
- run: python -m pytest -q


Agent side (Jetson-C)


FILE: ai/governor/server.py


Minimal FastAPI governor that accepts a natural-language task and converts it to repo changes + PRs.


Comments explain each stage; tools/* house the primitives.


from fastapi import FastAPI
from pydantic import BaseModel
from tools import code_writer, repo_ops, test_runner, pr_open
app = FastAPI(title="AI Governor")
class Task(BaseModel):
title: str
spec: str # your instructions
repo_url: str
branch: str = "feature/auto"
@app.post("/task")
def handle_task(t: Task):
plan = code_writer.plan(t.spec)
changes = code_writer.apply_plan(plan)
repo_ops.commit(changes, branch=t.branch)
results = test_runner.run()
pr = pr_open.open(t.title, t.spec, results)
return {"pr": pr, "tests": results}


Why this scaffolding works for you


• You “guide”; agents propose & PR.
• All critical actions (secrets, payments, migration approvals) still require your one-word “Yes.”
• The Pi/Jetson split lets you keep GPU-heavy AI off the web path while Django stays fast and boring.
• Everything is containerized and k3s-ready; compose works for day-1 on a bench, then you promote to k3s.
• Observability is first-class; failures page you via Twilio.


Immediate next steps (no guesswork)


  1. Flash Ubuntu 24.04 LTS on all Pis/Jetsons; set hostnames exactly: pi-ingress, pi-data, pi-web, pi-worker, pi-obs, jet-vision, jet-nlp, jet-gov.
  2. Install Docker + k3s; join all Pis to a single k3s cluster; add NVIDIA runtime to each Jetson.
  3. Create a private Git repo; paste this monorepo structure as v0 and push.
  4. On jet-gov, run the AI Governor container; set it up with access tokens to your repo.
  5. On pi-data, init PostgreSQL with a separate disk; enable WAL archiving to MinIO; set daily logical dumps.
  6. On pi-ingress, bring up Cloudflare Tunnel; point a subdomain to pi-ingress:8000 → Nginx → web service.
  7. Run docker compose up on a single Pi to verify; then migrate to k3s using deploy/k3s manifests.
  8. Say “Add LLC onboarding wizard” to the Governor. Watch it open a PR. You review; reply “Yes.” It deploys.

Reality check (constraints)


  • CUDA/TensorRT versions must match JetPack; keep containers aligned with the Jetson L4T version.
  • Local LLM sizes on Jetson need pragmatism; use distilled 7B/8B models with quantization for speed.
  • You still approve PRs and provide API keys. That’s your only “hands-on.”
  • Legal docs (LLC, PMA, e-sign flows) will need your templates; the AI will wire them in.

If you want, I can expand any module (e.g., documents/epd extractor, workflows engine, or billing webhooks) into full code next.
 
Back
Top