Software to load on a NVIDIA Jetson Nano AI, robotics, and general development.

Software to load on a NVIDIA Jetson Nano AI, robotics, and general development.

1. Core System​


  • JetPack SDK (NVIDIA’s official software stack for Jetson)
    • Ubuntu-based OS (usually Ubuntu 18.04 or 20.04 depending on JetPack version).
    • CUDA Toolkit (GPU computing).
    • cuDNN (deep neural network acceleration).
    • TensorRT (inference optimization).
    • Multimedia API (camera, video encode/decode).
    • OpenCV with CUDA support.

You can flash JetPack with NVIDIA SDK Manager from a host PC.



2. Development Tools​


  • Python 3 (comes by default, but update it).
  • pip & virtualenv (for Python packages).
  • CMake & GCC (for compiling code).
  • git (version control).
  • VS Code (or nano/vim if you prefer lightweight editors).
  • JupyterLab / Jupyter Notebook (interactive coding).



3. Machine Learning / AI Libraries​


  • PyTorch (Jetson-optimized wheels available from NVIDIA/JetsonHacks).
  • TensorFlow Lite (lightweight for edge AI).
  • ONNX Runtime (for running ONNX models).
  • scikit-learn (general ML).
  • pandas / numpy / matplotlib (data science stack).
  • Hugging Face Transformers (if doing NLP).



4. Robotics / IoT Packages​


  • ROS/ROS2 (Robot Operating System) (if doing robotics).
  • MQTT (Mosquitto client/server) (for messaging).
  • Node-RED (visual programming for IoT).
  • OpenCV (with GStreamer support) (for vision tasks).
  • PySerial (if using Arduino/serial devices).



5. Cloud / Communication​


  • gRPC (for inter-process communication).
  • Flask / FastAPI (for REST APIs).
  • Docker (for containerized deployments).
  • NATS or RabbitMQ (if you want enterprise-grade event bus).



6. Optional but Useful​


  • Jetson.GPIO (to work with GPIO pins).
  • DeepStream SDK (for multi-camera / video analytics).
  • Open3D / PCL (for 3D point cloud processing).
  • YOLOv5/YOLOv8 repo (ready-to-go object detection).
  • Edge Impulse CLI (if you want to deploy Edge Impulse models).



✅ Quick Install Order Suggestion:


  1. Flash JetPack (includes CUDA, cuDNN, TensorRT, OpenCV).
  2. Update & upgrade system (sudo apt update && sudo apt upgrade).
  3. Install Python + pip + virtualenv.
  4. Install PyTorch + TensorFlow Lite.
  5. Install OpenCV, scikit-learn, pandas, numpy.
  6. Add extras: ROS, MQTT, Node-RED, Docker, DeepStream (as needed).

Jetson Nano setup script you can run (piece by piece or as a whole). This will give you a clean AI/IoT workstation right on your Nano.




🖥️ Jetson Nano Install Commands​


1. System Update​



<span><span>sudo apt update &amp;&amp; sudo apt upgrade -y<br>sudo apt install -y build-essential cmake git curl wget unzip<br></span></span>



2. Python & Dev Tools​




<span><span>sudo apt install -y python3-pip python3-venv python3-dev<br>pip3 install --upgrade pip setuptools wheel<br>pip3 install virtualenv jupyterlab notebook<br></span></span>



3. Core AI Libraries (Jetson-optimized)​


(Pytorch/TensorFlow have special wheels for Jetson)




<span><span><span># PyTorch (use NVIDIA-provided wheel, example for JetPack 4.6 / Nano)</span></span><span><br>wget https://nvidia.box.com/shared/static/xxxxxx.whl -O torch.whl<br>pip3 install torch.whl<br><br></span><span><span># TorchVision (compatible version)</span></span><span><br>sudo apt install -y libjpeg-dev zlib1g-dev<br>pip3 install torchvision<br><br></span><span><span># TensorFlow Lite</span></span><span><br>pip3 install tflite-runtime<br><br></span><span><span># ONNX Runtime</span></span><span><br>pip3 install onnxruntime<br></span></span>

(Replace the xxxxxx.whl link with the current wheel from JetsonHacks/PyTorch repo)




4. Data Science Stack​




<span><span>pip3 install numpy pandas matplotlib seaborn scikit-learn<br>pip3 install opencv-python pillow<br>pip3 install jupyterlab<br></span></span>



5. Robotics / IoT​




<span><span>sudo apt install -y mosquitto mosquitto-clients<br>pip3 install paho-mqtt<br>pip3 install pyserial<br>sudo apt install -y ros-&lt;distro&gt;-ros-base </span><span><span># (ROS1) change &lt;distro&gt; to melodic/noetic depending on Ubuntu</span></span><span><br></span></span>



6. Cloud & API Tools​




<span><span>pip3 install flask fastapi uvicorn<br>pip3 install grpcio grpcio-tools<br>sudo apt install -y docker.io docker-compose<br></span></span>



7. NVIDIA Extras (optional, powerful)​




<span><span><span># Jetson.GPIO for hardware pins</span></span><span><br>pip3 install Jetson.GPIO<br><br></span><span><span># DeepStream SDK (download from NVIDIA)</span></span><span><br></span><span><span># https://developer.nvidia.com/deepstream-getting-started</span></span><span><br></span></span>



✅ After Install​


  1. Reboot: sudo reboot
  2. Test GPU: python3 -c "import torch; print(torch.cuda.is_available())"
  3. Start JupyterLab: jupyter lab --ip=0.0.0.0 --port=8888


Jetson Nano install script you can save as setup_jetson.sh and run with bash setup_jetson.sh.




📄



<span><span><span>#!/bin/bash</span></span><span><br></span><span><span>set</span></span><span> -e<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Updating System ==="</span></span><span><br>sudo apt update &amp;&amp; sudo apt upgrade -y<br>sudo apt install -y build-essential cmake git curl wget unzip \<br> python3-pip python3-venv python3-dev \<br> libjpeg-dev zlib1g-dev<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Upgrading pip ==="</span></span><span><br>pip3 install --upgrade pip setuptools wheel virtualenv<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing JupyterLab ==="</span></span><span><br>pip3 install jupyterlab notebook<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing Data Science Stack ==="</span></span><span><br>pip3 install numpy pandas matplotlib seaborn scikit-learn pillow opencv-python<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing AI Libraries ==="</span></span><span><br></span><span><span># PyTorch (you must replace the wheel URL with the latest for Jetson Nano / JetPack version)</span></span><span><br>TORCH_WHL_URL=</span><span><span>"https://nvidia.box.com/shared/static/xxxxxx.whl"</span></span><span><br>wget </span><span><span>$TORCH_WHL_URL</span></span><span> -O torch.whl<br>pip3 install torch.whl<br>pip3 install torchvision<br>pip3 install tflite-runtime<br>pip3 install onnxruntime<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing IoT / Robotics ==="</span></span><span><br>sudo apt install -y mosquitto mosquitto-clients<br>pip3 install paho-mqtt pyserial<br><br></span><span><span># Uncomment if you want ROS (replace &lt;distro&gt; with melodic/noetic depending on Ubuntu)</span></span><span><br></span><span><span># sudo apt install -y ros-&lt;distro&gt;-ros-base</span></span><span><br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing Cloud / API Tools ==="</span></span><span><br>pip3 install flask fastapi uvicorn grpcio grpcio-tools<br>sudo apt install -y docker.io docker-compose<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing NVIDIA Extras ==="</span></span><span><br>pip3 install Jetson.GPIO<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Setup Complete! Reboot recommended. ==="</span></span><span><br></span></span>



🚀 Usage​


  1. Save the file:



    <span><span>nano setup_jetson.sh<br></span></span>
    (Paste the script, save with CTRL+O, exit with CTRL+X)
  2. Make it executable:



    <span><span><span>chmod</span></span><span> +x setup_jetson.sh<br></span></span>
  3. Run it:



    <span><span>./setup_jetson.sh<br></span></span>
  4. Reboot when finished:



    <span><span>sudo reboot<br></span></span>
 
Back
Top