Software to load on a NVIDIA Jetson Nano AI, robotics, and general development.
1. Core System
- JetPack SDK (NVIDIA’s official software stack for Jetson)
- Ubuntu-based OS (usually Ubuntu 18.04 or 20.04 depending on JetPack version).
- CUDA Toolkit (GPU computing).
- cuDNN (deep neural network acceleration).
- TensorRT (inference optimization).
- Multimedia API (camera, video encode/decode).
- OpenCV with CUDA support.
You can flash JetPack with NVIDIA SDK Manager from a host PC.
2. Development Tools
- Python 3 (comes by default, but update it).
- pip & virtualenv (for Python packages).
- CMake & GCC (for compiling code).
- git (version control).
- VS Code (or nano/vim if you prefer lightweight editors).
- JupyterLab / Jupyter Notebook (interactive coding).
3. Machine Learning / AI Libraries
- PyTorch (Jetson-optimized wheels available from NVIDIA/JetsonHacks).
- TensorFlow Lite (lightweight for edge AI).
- ONNX Runtime (for running ONNX models).
- scikit-learn (general ML).
- pandas / numpy / matplotlib (data science stack).
- Hugging Face Transformers (if doing NLP).
4. Robotics / IoT Packages
- ROS/ROS2 (Robot Operating System) (if doing robotics).
- MQTT (Mosquitto client/server) (for messaging).
- Node-RED (visual programming for IoT).
- OpenCV (with GStreamer support) (for vision tasks).
- PySerial (if using Arduino/serial devices).
5. Cloud / Communication
- gRPC (for inter-process communication).
- Flask / FastAPI (for REST APIs).
- Docker (for containerized deployments).
- NATS or RabbitMQ (if you want enterprise-grade event bus).
6. Optional but Useful
- Jetson.GPIO (to work with GPIO pins).
- DeepStream SDK (for multi-camera / video analytics).
- Open3D / PCL (for 3D point cloud processing).
- YOLOv5/YOLOv8 repo (ready-to-go object detection).
- Edge Impulse CLI (if you want to deploy Edge Impulse models).
- Flash JetPack (includes CUDA, cuDNN, TensorRT, OpenCV).
- Update & upgrade system (sudo apt update && sudo apt upgrade).
- Install Python + pip + virtualenv.
- Install PyTorch + TensorFlow Lite.
- Install OpenCV, scikit-learn, pandas, numpy.
- Add extras: ROS, MQTT, Node-RED, Docker, DeepStream (as needed).
Jetson Nano setup script you can run (piece by piece or as a whole). This will give you a clean AI/IoT workstation right on your Nano.
Jetson Nano Install Commands
1. System Update
<span><span>sudo apt update && sudo apt upgrade -y<br>sudo apt install -y build-essential cmake git curl wget unzip<br></span></span>
2. Python & Dev Tools
<span><span>sudo apt install -y python3-pip python3-venv python3-dev<br>pip3 install --upgrade pip setuptools wheel<br>pip3 install virtualenv jupyterlab notebook<br></span></span>
3. Core AI Libraries (Jetson-optimized)
(Pytorch/TensorFlow have special wheels for Jetson)
<span><span><span># PyTorch (use NVIDIA-provided wheel, example for JetPack 4.6 / Nano)</span></span><span><br>wget https://nvidia.box.com/shared/static/xxxxxx.whl -O torch.whl<br>pip3 install torch.whl<br><br></span><span><span># TorchVision (compatible version)</span></span><span><br>sudo apt install -y libjpeg-dev zlib1g-dev<br>pip3 install torchvision<br><br></span><span><span># TensorFlow Lite</span></span><span><br>pip3 install tflite-runtime<br><br></span><span><span># ONNX Runtime</span></span><span><br>pip3 install onnxruntime<br></span></span>
(Replace the xxxxxx.whl link with the current wheel from JetsonHacks/PyTorch repo)
4. Data Science Stack
<span><span>pip3 install numpy pandas matplotlib seaborn scikit-learn<br>pip3 install opencv-python pillow<br>pip3 install jupyterlab<br></span></span>
5. Robotics / IoT
<span><span>sudo apt install -y mosquitto mosquitto-clients<br>pip3 install paho-mqtt<br>pip3 install pyserial<br>sudo apt install -y ros-<distro>-ros-base </span><span><span># (ROS1) change <distro> to melodic/noetic depending on Ubuntu</span></span><span><br></span></span>
6. Cloud & API Tools
<span><span>pip3 install flask fastapi uvicorn<br>pip3 install grpcio grpcio-tools<br>sudo apt install -y docker.io docker-compose<br></span></span>
7. NVIDIA Extras (optional, powerful)
<span><span><span># Jetson.GPIO for hardware pins</span></span><span><br>pip3 install Jetson.GPIO<br><br></span><span><span># DeepStream SDK (download from NVIDIA)</span></span><span><br></span><span><span># https://developer.nvidia.com/deepstream-getting-started</span></span><span><br></span></span>
After Install
- Reboot: sudo reboot
- Test GPU: python3 -c "import torch; print(torch.cuda.is_available())"
- Start JupyterLab: jupyter lab --ip=0.0.0.0 --port=8888
Jetson Nano install script you can save as setup_jetson.sh and run with bash setup_jetson.sh.
<span><span><span>#!/bin/bash</span></span><span><br></span><span><span>set</span></span><span> -e<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Updating System ==="</span></span><span><br>sudo apt update && sudo apt upgrade -y<br>sudo apt install -y build-essential cmake git curl wget unzip \<br> python3-pip python3-venv python3-dev \<br> libjpeg-dev zlib1g-dev<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Upgrading pip ==="</span></span><span><br>pip3 install --upgrade pip setuptools wheel virtualenv<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing JupyterLab ==="</span></span><span><br>pip3 install jupyterlab notebook<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing Data Science Stack ==="</span></span><span><br>pip3 install numpy pandas matplotlib seaborn scikit-learn pillow opencv-python<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing AI Libraries ==="</span></span><span><br></span><span><span># PyTorch (you must replace the wheel URL with the latest for Jetson Nano / JetPack version)</span></span><span><br>TORCH_WHL_URL=</span><span><span>"https://nvidia.box.com/shared/static/xxxxxx.whl"</span></span><span><br>wget </span><span><span>$TORCH_WHL_URL</span></span><span> -O torch.whl<br>pip3 install torch.whl<br>pip3 install torchvision<br>pip3 install tflite-runtime<br>pip3 install onnxruntime<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing IoT / Robotics ==="</span></span><span><br>sudo apt install -y mosquitto mosquitto-clients<br>pip3 install paho-mqtt pyserial<br><br></span><span><span># Uncomment if you want ROS (replace <distro> with melodic/noetic depending on Ubuntu)</span></span><span><br></span><span><span># sudo apt install -y ros-<distro>-ros-base</span></span><span><br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing Cloud / API Tools ==="</span></span><span><br>pip3 install flask fastapi uvicorn grpcio grpcio-tools<br>sudo apt install -y docker.io docker-compose<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Installing NVIDIA Extras ==="</span></span><span><br>pip3 install Jetson.GPIO<br><br></span><span><span>echo</span></span><span> </span><span><span>"=== Setup Complete! Reboot recommended. ==="</span></span><span><br></span></span>
Usage
- Save the file:
<span><span>nano setup_jetson.sh<br></span></span>
(Paste the script, save with CTRL+O, exit with CTRL+X) - Make it executable:
<span><span><span>chmod</span></span><span> +x setup_jetson.sh<br></span></span> - Run it:
<span><span>./setup_jetson.sh<br></span></span> - Reboot when finished:
<span><span>sudo reboot<br></span></span>